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D, t . 0, (1)Our aim in this article is to present for a very simple model—

namely a pair of ordinary coupled differential equations—some of
the features of the multilevel numerical methods which have been y(0) 5 y0 , z(0) 5 z0 . (2)introduced recently for the numerical simulation of turbulent flows.
The two components of this simple differential system are intended
to represent the large and small scale components of a flow. We Here y and z play the same role respectively as the low
show that many new numerical schemes can be introduced by and high frequency components of the flow (e.g., of the
treating differently the small and large scale components; also dif-

velocity vector). The important features of the matrix inferent time steps can be used for these two components. The stabil-
(1) is that its eigenvalues are O(1) and O(1/«), « . 0 small;ity analysis which we conduct for this simple model shows that

these new multilevel schemes can produce a substantial saving in the linear coupling terms (y 2 z and z 2 y terms) are not
computing time, although the stability analysis leads sometime to important and in fact are not present in the related case
counterintuitive conclusions. The error analysis for this model of Fourier and spectral discretizations.will be conducted elsewhere. Also the reader is referred to the

For this very simple system and also for the associatedarticles quoted below (in particular, [8, 10]) for the utilization
of similar multilevel schemes for the Navier–Stokes equations linear system obtained by dropping the nonlinear terms,
themselves. Q 1996 Academic Press, Inc. the stability analysis is elementary. We will show how one

can build appropriate numerical schemes based on differ-
ent treatments and different time steps for y and z (Dty ?

1. INTRODUCTION Dtz). Although it may not be transparent at first glance,
much of the analysis is very similar to what has been doneSome numerical algorithms have been introduced in a
elsewhere in infinite dimensions for partial differentialrecent past for the numerical simulation of turbulent flows,
equations and, in particular, the Navier–Stokes equationsnamely the nonlinear Galerkin method and the incremen-
(see, e.g., [3, 25, 31]). We recover many of the results oftal unknowns method (see, e.g., [3–16, 24–26, 30–34]).
the stability analysis of the multilevel methods for theThese methods initially motivated by some theoretical re-
Navier–Stokes equations without paying the price of allsults in dynamical systems theory are now developing into
the necessary mathematical machinery related, e.g., to themore conventional numerical methods for which the essen-
discrete Sobolev space norms. As we will see the conclu-tial feature and novelty is a differentiated treatment of the
sions of the stability analysis are sometime counterintuitive.high and low frequency components of a flow or its small

The utilization of the new multilevel methods are alsoand large structures. It is indeed a recognized fact of the
justified by some other aspects which are not alluded todynamical system theory approach (attractors, exact and
here: error analysis, count of the number of operations, andapproximate inertial manifolds), that the high and low
finally, the filtering role of the utilization of approximatefrequency components of a flow play different roles
inertial manifolds. For the error analysis and the count of(see, among many Refs., [11–16]). This fact is also well
operations see, in particular and for the Navier–Stokesrecognized in conventional turbulence theory (see, e.g.,
equations [3, 22, 24]; for the present model see [19]; forBatchelor’s book [1, Chap. VI]) that the high frequen-
the filtering role of approximate inertial manifolds, see,cies, commanded in fact by a high viscosity, attain a
e.g., [8–10]. Also our equations used to model the stabilitystatistical equilibrium much faster than the low fre-
analysis of the multilevel methods and the general behav-quencies.
iour of the solutions are probably too simple to modelThe simple differential system that we propose here

reads more involved physical phenomena. With that respect they
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depart from, e.g., the turbulent cascade models such as the S1 1

1 1/«
D by Sn n

n n/«
DGOY model [2, 18, 20, 21, 23, 27, 29, 35].

In Sections 1 and 2 we describe some numerical schemes
and their stability properties. Then in Section 3 we briefly

and we start by considering the linear equation. An ordi-mention some numerical computations, adding, in particu-
nary explicit Euler scheme with time step Dt, readslar, a white noise to make the dynamics more interesting.

In the concluding remarks we allude to some other less
elementary aspects of the nonlinear Galerkin method and yn 2 yn21

Dt
1 nyn21 1 nzn21 5 f,

(3)the incremental unknowns method in the way they are
implemented at this time (see, e.g., [34] and the references zn 2 zn21

Dt
1 nyn21 1

n
«

zn21 5 g.therein, or [4, 9, 10]).
We conclude this introduction with a few simple remarks

on the system (1). For simplicity f and g are constants It is standard that the stability (CFL-type) condition for
independent of time and of «, i.e., f, g 5 O(1). We use the (3) reads
analog of the energy equation in fluid mechanics, obtained
by multiplying the first equation (1) by y, the second by z Dt , 2«/n, (4)
and adding the resulting equations.1 From this we find that
for any y0 , z0 , y(t) and z(t) are respectively of order O(1) so that for, e.g., n 5 O(1) and « small, Dt must be less
and O(«) for large time and, hence, ẏ 5 O(1), ż 5 O(1), than O(«).
so that y/ẏ 5 O(1), z/ż 5 O(«). If y0 5 O(1) and z0 5 If we treat y and z differently, we could consider the
O(«), the same result is valid for all times. Here large time scheme
play the role of times for which the statistical equilibrium
has been reached and small time plays the role of transient yn 2 yn21

Dt
1 nyn21 1 nzn21 5 f,

(5)
time in turbulence; y/ẏ is the analog of the large eddies
turnover time, z/ż is the analog of the small eddies turn-
over time.2 zn 2 zn21

Dt
1 nyn 1

n
«

zn 5 g.
Another feature of Eq. (1) is the following: at first glance,

because of the factor 1/«, Eq. (1) seems to be a stiff differ-
ential equation. In fact the factor 1/«, corresponding to an It is elementary to derive the stability condition for (5);
increased effective viscosity, has a beneficial damping ef- we find
fect and the stiffness of (1) may only appear in the initial
transient if z0 is not already small, O(«). This initial tran-

Dt ,
2 2 4«

n
(6)sient time is of little importance since we are interested in

large time behavior and time averages.
and

2. TWO LEVEL DISCRETIZATION
SCHEMES (Dty 5 Dtz)

Dt ,
n
«

. (7)

As indicated before, the schemes that we consider corre-
spond to differentiated treatment for y and z; by this we Similarly for the full nonlinear equation, we could con-
mean that the time discretization (explicit/implicit) is not sider the scheme
the same for y and z. By comparison with a partial differen-
tial equation for the unknown u, the introduction of the yn 2 yn21

Dt
1 nyn21 1 nzn21 1 yn21zn21 5 f,

(8)
decomposition u 5 y 1 z yields a number of new schemes
by combining explicit/implicit discretizations for y and z,
for the linear and nonlinear terms. zn 2 zn21

Dt
1 nyn 1

n
«

zn 2 (yn)2 5 g.
To bring a little more generality in the calculations, we

replace the matrix
This scheme is linearly implicit in z and fully explicit in y
(yn is known when we compute zn in the second equa-

1 The stability analysis as well will be based on energy methods, i.e., tion (8)).
on the discrete analog of the energy equation.

We can conduct the stability analysis of this scheme. We2 It is a well-known fact in conventional turbulence theory that the
properly combine the three equations obtained as follows:eddy turn over time of small eddies (high frequencies) is much smaller

than that of large eddies; see, e.g., [1; 28, p. 279]. we multiply the first equation (8) by yn21, the second equa-
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tion (8) by zn and the first equation (8) by yn 2 yn21. After commanded by the stability condition of the large eddies,
which is much larger than what is allowed by (4).some lengthy but straightforward calculations we find that

for any d . 0, In the PDE (partial differential equation) analog, one
could argue that the resolution of the second equation (8)
will be costly but this is not the case because z is small(uyn11u2 1 uznu2) 2 (uynu2 1 uzn21u2) 1 uzn 2 zn21u2
after the transient, and therefore many less digits/much
less accuracy are needed when solving the second equation1 2k1n Dt uynu2 1 k2

n Dt
«

uznu2

(9)
(8). Also this difficulty of solving the z equation is totally
removed in the schemes considered in Section 2, where

# 2 Dt fyn 1 (Dt)2 S1 1
3
dD ( f )2

Dty ? Dtz .

3. MULTILEVEL DISCRETIZATION2 2 Dt gzn 1 Dt2uynznu2,
SCHEMES (Dty ? Dtz)

with
Pursuing the idea of treating differently y and z (‘‘the

large and small structures’’), we consider now schemes2k1 5 2 2 4« 2 n Dt(1 1 d),
with Dty ? Dtz; see [3, 24] for related schemes.

k2 5 1 2 «n Dt(1 1 3/d). We set Dty 5 Dt, Dtz 5 q Dt, where q . 1 is an integer.
One of the many schemes one can think of is

Hence, if (6) holds, there exists d . 0 such that 2k1 . 0.
We then require

Dt ,
1

2«n(1 1 3/d)
, (10)

which implies k2 $ As.

yn11/q 2 yn

Dt
1 nyn 1 nzn 1 cynzn 5 f,

yn12/q 2 yn11/q

Dt
1 nyn11/q 1 nzn 1 cynzn 5 f,

.

.

.

yn11 2 yn1(q21)/q

Dt
1 nyn1(q21)/q 1 nzn 1 cynzn 5 f,

zn11 2 zn

q Dt
1 nyn11 1 n

zn11

«
2

c
q O

q

j51
uyn1( j21)/qu2 5 g.

(14)

Returning to (9) we find

j n11 2 j n 1 uzn 2 zn21u2 1 k1n Dtuynu2

(11)
1

n Dt
«
S1

4
2 «L2

n
Dt
n

c 2D uznu2 # a Dt,
(15)

with

We take c 5 0 in the linear case and c 5 1 for the nonlinear
j n 5 uynu2 1 uzn21u2,

equation. Note that the scheme is always explicit in y (yn11

is known when computing zn11 in (15)); it is linearly implicit
a 5

1
k1

u f u2 1 Dt2 S1 1
3
dD u f u2 1 4

« Dt
n

ugu2, in z (in (15)).
In the linear case, the stability analysis conducted as

before leads to the stability conditions,and Ln 5 j 1 1 an Dt. Hence, with N 5 T/Dt, T . 0 fixed,
we conclude that

Dt ,
2 2 2« 2 2q«

n
, (16)

uynu2 1 uzn21u2 # L1 1 aT for n 5 1, ..., N, (12)

Dt ,
1 2 «

2«n(1 1 2/d)
, (17)provided (6) and (10) are supplemented by

for some suitable d . 0. Of course, (17) follows fromDt #
n

8«(L1 1 aT)
. (13)

(16) for « small and we conclude that the (main) stability
condition (16) is very close, essentially the same as the
stability condition for the y equation only (i.e., (4) whenIn conclusion, for « small, for both the linear and nonlin-

ear equations, the stability condition is that of the y equa- z ; 0). In the nonlinear case the stability analysis is more
involved than in the two-level case. It leads, however, totion (namely (6)). Hence, by considering a scheme which

is explicit in y and implicit in z, we can take a mesh Dt two stability conditions, one very similar to (16), i.e.,
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FIG. 1. (a) Instantaneous and (b) time-averaged values of y(t).

ẏ 1 y 1 z 1 yz 5 f 1 s,
Dt #

2 2 4«

n 1 («L)1/2 , (18)

ż 1 y 1
1
«

z 2 y2 5 g 1 t,
where L is some constant and another condition similar
to (17), and which, like (17), follows from (18) for « small. y(0) 5 y0 , z(0) 5 z0 ,
Hence for « small the stability condition is essentially that
of y and it is much better than (4). where s and t are independent white noises. In fact, after

time discretization with time step Dt we write
4. SOME NUMERICAL COMPUTATIONS

Es1Dt

s
ds(t) 5 s(s 1 Dt) 2 s(s) p N (0, r Dt),Some numerical simulations have been performed which

are, of course, very easy. The purpose is not to check the
stability conditions or efficiency of the schemes but just where N (0, Dt) is a random variable with zero mean and

variance r Dt.to display the geometry of the solutions. To produce an
interesting dynamics and for a better similarity with fluid The results (Figs. 1 to 6) are displayed for « 5 1023,

f 5 g 5 1, y0 5 1, z0 5 0.1, r 5 0.01.mechanics, a white noise has been added. Hence, we solve

FIG. 2. (a) Instantaneous and (b) time-averaged values of z(t).
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FIG. 3. (a) Instantaneous and (b) time-averaged values of dy(t)/dt.

FIG. 4. (a) Instantaneous and (b) time-averaged values of dz(t)/dt.

FIG. 5. (a) Instantaneous and (b) time-averaged values of (dy(t)/dt)/y(t).
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FIG. 6. (a) Instantaneous and (b) time-averaged values of (dz(t)/dt)/z(t).
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